Athlone Town Centre Enhancement Works Micro-Simulation Traffic Modelling Report

Reference Number 300706

ATHLONE TOWN CENTRE ENHANCEMENT WORKS

MICRO-SIMULATION TRAFFIC MODELLING REPORT

11/03/2021

ATHLONE TOWN CENTRE ENHANCEMENT WORKS

IDENTIFICATION TABLE	
Client/Project owner	Westmeath County Council
Project	Athlone Town Centre Enhancement Works
Study	Micro-simulation Traffic Modelling Report
Type of document	For Part 8 Planning
Date	11/03/2021
Reference number	300706
Number of pages	18

APPROVAL

Version	Name		Position	Date	Modifications	
1	Author	Arantxa Martinez-Peral	Principal Consultant	10/03/2021		
	Checked by	Sheelagh McGuinness	Principal Consultant	11/03/2021	Draft Report	
	Approved by	Andrew Archer	Director	11/03/2021		
	Author			dd/mm/yyyy		
2	Checked by			dd/mm/yyyy		
	Approved by			dd/mm/yyyy		

TABLE OF CONTENTS

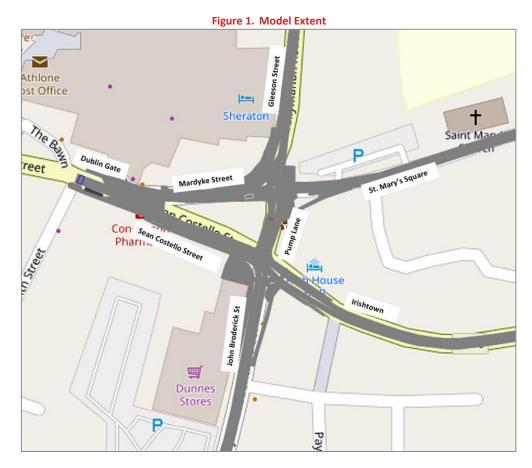
1.	INTRODUCTION	6
1.1	BACKGROUND	6
1.2	DEVELOPMENT DESCRIPTION	6
1.3	PURPOSE OF THIS REPORT	7
2.	TRAFFIC ANALYSIS METHODOLOGY	8
2.1	Scenarios Modelled	8
2.2	TRAFFIC DEMAND	8
2.3	BACKGROUND GROWTH	9
2.4	OPTIMISATION OF SIGNALS	9
3.	FORECAST MODELLING RESULTS	11
3.2	NETWORK STATISTICS	11
3.3	TRAFFIC FLOW THROUGHPUT	13
3.4	QUEUE LENGTHS	15
3.5	SUMMARY	17

SYSTIA

LIST OF FIGURES

Figure 1.	Model Extent	6
Figure 2.	Proposed Works at the Junctions	7
Figure 3.	Do Something Model	8
Figure 4.	AM 2022 Traffic Flows	13
Figure 5.	PM 2022 Traffic Flows	13
Figure 6.	AM 2040 Traffic Flows	14
Figure 7.	PM 2040 Traffic Flows	14

LIST OF TABLES


Demand Matrix Totals	9
2022 AM Peak Network Performance Statistics	11
2022 PM Peak Network Performance Statistics	11
2040 AM Peak Network Performance Statistics	12
2040 PM Peak Network Performance Statistics	12
AM 2022 Queue Lengths – Gleeson Street Junction	15
AM 2022 Queue Lengths – John Broderick Street Junction	15
PM 2022 Queue Lengths – Gleeson Street Junction	16
PM 2022 Queue Lengths – John Broderick Street Junction	16
	2022 AM Peak Network Performance Statistics 2022 PM Peak Network Performance Statistics 2040 AM Peak Network Performance Statistics 2040 PM Peak Network Performance Statistics AM 2022 Queue Lengths – Gleeson Street Junction AM 2022 Queue Lengths – John Broderick Street Junction PM 2022 Queue Lengths – Gleeson Street Junction

1. INTRODUCTION

1.1 Background

- 1.1.1 SYSTRA has been commissioned by Westmeath County Council to undertake an assessment of the traffic impacts of the public realm proposals for Athlone Town Centre Public Realm Enhancement Works. The study area is shown in Figure 1, consisting of the following two junctions:
 - **R915 Gleeson St / Mardyke St / St Mary's Square**: this junction is currently a priority junction.
 - Sean Costello St / John Broderick St/ Irish Town / Pump Lane: this junction is currently a 4-arm traffic signals junction.



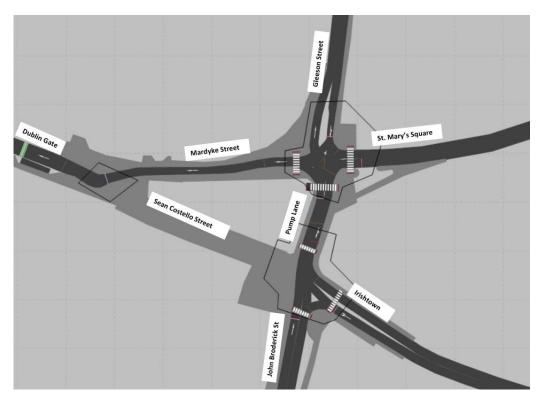
1.2 Development Description

- 1.2.1 The Development of Public Realm Enhancement Works, encompassing approximately 0.6HA at Mardyke St, Pump Lane and Sean Costello St, Athlone, Co. Westmeath, includes the following public realm improvements:
 - Provision of upgraded footpaths and realignment of existing carriageway along Mardyke Street, including pedestrianisation of Sean Costello Street, from its junction with Pump Lane to the junction with Mardyke Street, to account for the access needs of pedestrians, mobility impaired persons and service vehicles;

- Provision of an enhanced public realm and landscape improvements, including street furniture, incidental play equipment, cycle parking, trees, and soft landscaping to enhance biodiversity;
- Provision of a priority signalised junction, including enhanced pedestrian facilities, at the junction of Mardyke Street, Gleeson Street, Pump Lane, and St Mary's Square;
- Upgrade to public lighting, including focal lighting to Sean Costello Street; and
- All necessary accommodation works, including utility provision, drainage, signage, and other ancillary works.
- 1.2.2 The proposed works will imply the following changes on the traffic network:
 - Pedestrianisation of Sean Costello Street. Traffic wishing to travel to Dublin Gate / Church Street will be diverted to Mardyke Street.
 - Mardyke Street junction will be upgraded to a traffic signals junction with pedestrian crossings on three arms i.e. Pump Lane, Mardyke Street and St. Mary's Square. Figure 2 shows the general arrangement drawing of the proposed works at the two junctions.

Figure 2. Proposed Works at the Junctions

1.3 Purpose of this report


1.3.1 This report is part of the Part 8 Planning Documents to present the results of the traffic analysis undertook with VISSIM – Microsimulation Modelling. Microsimulation modelling software captures the impacts of individual driver behaviour characteristics on the performance of road networks and junctions, it provides a more accessible representation of modelling results than traditional modelling outputs.

2. TRAFFIC ANALYSIS METHODOLOGY

2.1 Scenarios Modelled

- 2.1.1 The scenarios modelled and presented in this report are:
 - 2022 Do Minimum (DM) to include background traffic growth up to 2022, with no network changes.
 - 2040 Do Minimum (DM) to include background traffic growth up to 2040, with no network changes.
 - 2022 Do Something to include background traffic growth up to 2022, including proposed pedestrianisation of Sean Costello Street and Mardyke Street junction upgraded to traffic signals.
 - 2040 Do Something to include background traffic growth up to 2040, including proposed pedestrianisation of Sean Costello Street and Mardyke Street junction upgraded to traffic signals.

Figure 3. Do Something Model

2.2 Traffic Demand

- 2.2.1 The base year matrices were calculated from traffic surveys carried out in September 2020, during the COVID-19 Pandemic. To include any impacts of COVID-19 on traffic demand the following methodology was followed.
 - Comparison of traffic data from the Urban Traffic Control (UTC) signal system to show the difference between September 2020 and September 2019. This factor was applied to growth the 2020 matrices to a 2019 pre-COVID level;

- Applied Westmeath Transport Infrastructure Ireland Travel Demand Projections to the matrices to growth from the base traffic counts to 2022 and 2040;
- It has been assumed for this study that no traffic has redistributed elsewhere on the network. This means that the worst-case methodology has been used to test the key junctions.
- AM Peak hour is 08:30 09:30, PM Peak Hour is 17:00 18:00

2.3 Background Growth

2.3.1 The factors calculated were as follows:

2020 COVID (Base) to 2019 Pre-COVID:

- AM Peak 1.09;
- PM Peak 1.17.

2019 to 2022:

- Lights 1.05;
- Heavies 1.10;

2019 to 2040:

- Lights 1.27;
- Heavies 1.63;
- 2.3.2 The traffic demand matrix totals are shown in Table 1 below.

	Table 1.Demand Matrix Totals				otals
Matrix Totals		Base	2019	2022	2040
AM	Lights	892	969	9 1014	1062
AM	Heavies	28	29	33	47
PM	Lights	1040	1220) 1277	1339
PM	Heavies	9	0,	9 17	24

2.4 Optimisation of signals

- 2.4.1 Both traffic signals junctions have been linked and optimised in the Model to improve the overall efficiency of the junction, in particular to avoid queues on Pump Lane.
- 2.4.2 John Broderick St/ Irish Town / Pump Lane. Total Cycle Time = 100s
 - John Broderick & Pump Lane to all directions = 46s Green, 3s Intergreen and 2s Red
 - Irishtown to all directions = 26s Green, 3s Intergreen and 2s Red
 - Pedestrians on all the junction = 7s Green and 5s Intergreen
- 2.4.3 R915 Gleeson St / Mardyke St / St Mary's Square. Total Cycle Time = 100s
 - Gleeson Street to all directions = 38s Green*, 3s Intergreen and 2s Red
 - Pump Lane to all directions = (38s of Gleeson Street)** + 36s Green, 3s Intergreen and 2s Red

- St Mary's Square to all directions = 7s Green, 3s Intergreen and 1s Red
- Pedestrians on all the junction = 7s Green and 5s Intergreen

* on the PM scenario the green time for Gleeson Street has been increased to 45 seconds to reduce the queues along Gleeson Street to avoid impacts on The Crescent

** The green time on Pump Lane is adding the green time for Gleeson St in order to avoid queuing, i.e. 38s + 36s = 74s.

3. FORECAST MODELLING RESULTS

3.1.1 This section of the report summarises the results obtained from the VISSIM Micro-simulation modelling, for 2022 and 2040 in the AM and PM peak hours. Results provided are for the Network Statistics, the Traffic Flow Throughput and the Queue Lengths.

3.2 Network Statistics

2022 AM Peak Model Results

Summary Network Statistics

3.2.1 Table 2 presents the Network Performance Statistics from the AM peak models comparing the 2022 Do Minimum (DM) and the 2022 Do Something.

Measure	DM	Do Something
Total Travel Time (hrs)	17	24
Total Distance Travelled (km)	529	547
Average Speed (kph)	32	23
Average Travel Time (s)	57	82
Completed Journeys (veh)	1041	1049
Latent Demand (veh)	0	0
Vehicles still in network (veh)	14	17
Latent Delay (seconds)	134	212
Total Travel Time (seconds)	60424	86988

Table 2. 2022 AM Peak Network Performance Statistics

3.2.2 In the 2022 AM peak there is an increase in the average travel time per vehicle for the Do Something when compared to the DM model (25 seconds).

2022 PM Peak Model Results

3.2.3 Table 3 presents the Network Performance Statistics from the PM peak models comparing the 2022 Do Minimum (DM) and the 2022 Do Something.

Table 3. 2022 PM Peak Network Performance Statistics

Summary Network Statistics	_
	-

Measure	DM	Do Something
Total Travel Time (hrs)	21	36
Total Distance Travelled (km)	640	660
Average Speed (kph)	31	20
Average Travel Time (s)	57	97
Completed Journeys (veh)	1289	1287
Latent Demand (veh)	0	2
Vehicles still in network (veh)	25	43
Latent Delay (seconds)	159	5128
Total Travel Time (seconds)	74608	124414

3.2.4 In the 2022 PM peak there is an increase in the average travel time per vehicle for the Do Something when compared to the DM model (40 seconds).

2040 AM Peak Model Results

Summary Network Statistics

3.2.5 Table 24 presents the Network Performance Statistics from the AM peak models comparing the 2040 Do Minimum (DM) and the 2040 Do Something.

Measure	DM	Do Something
Total Travel Time (hrs)	18	28
Total Distance Travelled (km)	562	580
Average Speed (kph)	31	21
Average Travel Time (s)	58	89
Completed Journeys (veh)	1105	1112
Latent Demand (veh)	0	0
Vehicles still in network (veh)	15	18
Latent Delay (seconds)	151	1346
Total Travel Time (seconds)	64809	98778

Table 4. 2040 AM Peak Network Performance Statistics

3.2.6 In the 2040 AM peak there is an increase in the average travel time per vehicle for the Do Something when compared to the DM model (31 seconds).

2040 PM Peak Model Results

3.2.7 Table 5 presents the Network Performance Statistics from the PM peak models comparing the 2040 Do Minimum (DM) with the 2040 Do Something.

Table 5. 2040 PM Peak Network Performance Statistics

Measure	DM	Do Something
Total Travel Time (hrs)	22	48
Total Distance Travelled (km)	674	691
Average Speed (kph)	31	17
Average Travel Time (s)	57	122
Completed Journeys (veh)	1358	1348
Latent Demand (veh)	0	7
Vehicles still in network (veh)	26	52
Latent Delay (seconds)	179	19998
Total Travel Time (seconds)	79108	151161

Summary Network Statistics

3.2.8 In the 2040 PM peak there is an increase in the average travel time per vehicle for the Do Something Scenario when compared to the DM model (65 seconds).

3.3 Traffic Flow Throughput

3.3.1 The following figures show the traffic flows going to Mardyke Street and Sean Costello Street on the DM Scenario, and the traffic flows on Mardyke Street as a consequence of the pedestrianisation of Sean Costello Street.

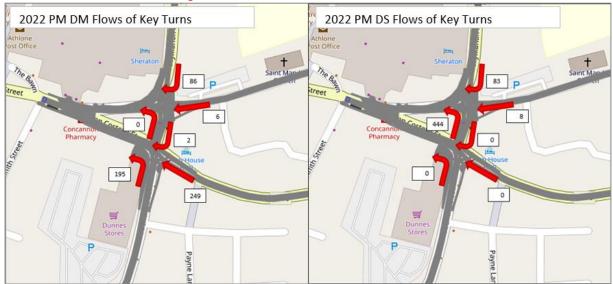

2022 AM Peak Model

Figure 4. AM 2022 Traffic Flows

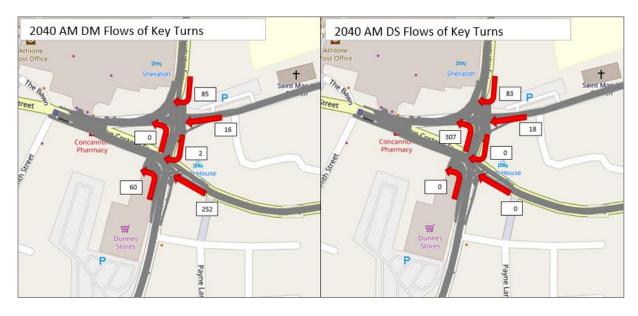

2022 PM Peak Model

Figure 5. PM 2022 Traffic Flows

2040 AM Peak Model

Figure 6. AM 2040 Traffic Flows

2040 PM Peak Model

Figure 7. PM 2040 Traffic Flows

3.4 Queue Lengths

3.4.1 The following tables show the forecast mean – max queue lengths, in PCU (Passenger Car Units).

2022 AM Peak Model - Gleeson Street / Mardyke Street Junction

- Do Something will have an average maximum queue length along Gleeson Street of 29 PCU in AM Peak hour, compared to the DM average queue length of 10 PCU in the AM peak hour.
- Do Something will have an average maximum queue length along St. Mary's Square of 6 PCU in AM Peak hour, compared to the DM average queue length of 2 PCU in the AM peak hour.
- Do Something will have an average maximum queue length along Pump Lane of 5 PCU in AM Peak hour, meanwhile the DM average queue length is 0 as it is currently a primary junction.

	Gleeson St		St Mary's Square Pump Lane		Lane	
Time	Arr	n A	Arm B Arm C		n C	
	DM	DS	DM	DS	DM	DS
8:15	0	9	1	2	0	2
8:30	6	17	1	4	0	3
8:45	10	27	2	6	0	3
9:00	14	38	2	6	0	6
9:15	9	31	2	6	0	6
9:30	8	21	2	4	0	5
9:45	6	20	1	4	0	4
10:00	2	16	2	4	0	3
Average peak hour	10	29	2	6	0	5

 Table 6.
 AM 2022 Queue Lengths – Gleeson Street Junction

2022 AM Peak Model - John Broderick Street / Irishtown Junction

- Both scenarios will have very similar queues along Irishtown and John Broderick Street.
- Queues along Pump Lane in Do Something are shorter due to the introduction of traffic signals in the northern junction which retain the traffic.

	Table /	. AIVI 20	22 Queue Len	igtns – John B	roderick Stree	et Junction
	Pump Lane		Irishtown		John Broderick Street	
Time	Arm A		Arm B		Arm C	
	DM	DS	DM	DS	DM	DS
8:15	7	1	6	6	3	3
8:30	14	2	9	10	4	4
8:45	17	3	12	12	5	5
9:00	21	4	13	14	6	5
9:15	17	5	11	12	6	5
9:30	15	3	10	10	5	5
9:45	13	2	9	10	5	5
10:00	11	3	7	7	4	4
Average peak hour	18	4	11	12	5	5

Table 7.	AM 2022 Queue Lengths – John Broderick Street Junction

2022 PM Peak Model - Gleeson Street / Mardyke Street Junction

- Do Something will have an average maximum queue length along Gleeson Street of 36 PCU in PM Peak hour, compared to the DM average queue length of 8 PCU in the PM peak hour.
- Do Something will have an average maximum queue length along St. Mary's Square of 5 PCU in PM Peak hour, compared to the DM average queue length of 2 PCU in the PM peak hour.
- Do Something will have an average maximum queue length along Pump Lane of 7 PCU in PM Peak hour, meanwhile the DM average queue length is 0 as it is currently a primary junction.

Table 8. PM 2022 Queue Lengths – Gleeson Street Junction						
	Gleeson St		St Mary's Square		Pump Lane	
Time	Arm A		Arm B		Arm C	
	DM	DS	DM	DS	DM	DS
16:45	10	29	2	4	0	6
17:00	8	33	1	4	0	7
17:15	10	38	2	5	0	8
17:30	7	40	1	4	0	5
17:45	6	30	2	5	0	6
18:00	10	35	1	5	0	8
18:15	8	41	2	5	0	6
18:30	5	35	1	4	0	6
Average peak hour	8	36	2	5	0	7

 Table 8.
 PM 2022 Queue Lengths – Gleeson Street Junction

2022 PM Peak Model - John Broderick Street / Irishtown Junction

- Both scenarios will have very similar queues along Irishtown and John Broderick Street.
- Queues along Pump Lane in Do Something are shorter as we are introducing traffic signals in the northern junction which retain the traffic.

	lable	9. PIVI ZI	UZZ Queue Lei	ngtus – John B	roderick Stree	et Junction
	Pump Lane		Irishtown		John Broderick Street	
Time	Arm A		Arm B		Arm C	
	DM	DS	DM	DS	DM	DS
16:45	18	3	11	12	14	15
17:00	15	5	13	14	12	12
17:15	18	5	12	13	12	13
17:30	15	6	11	12	13	13
17:45	14	6	11	11	13	12
18:00	18	5	13	13	14	14
18:15	15	4	12	13	15	15
18:30	13	5	10	11	11	12
Average peak hour	16	6	12	12	13	13

Table 9.	PM 2022 Queue Lengths – John Broderick Street Junction
Table 5.	Five 2022 Queue Lengths - John Broderick Street Junction

3.5 SUMMARY

- 3.5.1 This report details the VISSIM Micro-simulation modelling assessment and results for the proposed scheme for Athlone Town Centre Enhancement Works.
- 3.5.2 The scenarios modelled and presented in this report are:
 - 2022 Do Minimum (DM) to include background traffic growth up to 2022, with no network changes.
 - 2040 Do Minimum (DM) to include background traffic growth up to 2040, with no network changes.
 - 2022 Do Something to include background traffic growth up to 2022, including proposed pedestrianisation of Sean Costello Street and Mardyke Street junction upgraded to traffic signals.
 - 2040 Do Something to include background traffic growth up to 2040, including proposed pedestrianisation of Sean Costello Street and Mardyke Street junction upgraded to traffic signals.
- 3.5.3 The model forecasts the following:
 - The introduction of traffic signals and the pedestrianisation of Sean Costello Street will have a minimal impact on the queues along John Broderick Street, Irishtown and St. Mary's Square.
 - Gleeson Street will present longer queues on the Do Something Scenario. However, the maximum queue will not affect the northern junction The Crescent.
 - There is an increase in travel journeys due to the re-routing of traffic via Mardyke Street and the introduction of traffic signals in Mardyke Street Junction.
 - The traffic flows along John Broderick Street, Irishtown and St. Mary Square will clear in a single cycle. However, traffic flows on Gleeson Street on AM and PM peak hour will not clear in a single cycle.
- 3.5.4 Benefits of this scheme
 - This scheme is providing safe and legible pedestrian crossings on Mardyke Street, Pump Lane and Mary's Square in line with the project objective of placing pedestrians at the highest level of consideration.
 - The upgrade of Mardyke Street junction to traffic signals resolves the visibility issues on the existing primary junction, highlighted by the Road Safety Audit Report.

SYSTRA provides advice on transport, to central, regional and local government, agencies, developers, operators and financiers.

A diverse group of results-oriented people, we are part of a strong team of professionals worldwide. Through client business planning, customer research and strategy development we create solutions that work for real people in the real world.

For more information visit www.systra.ie

Birmingham – Newhall Street 5th Floor, Lancaster House, Newhall St, Birmingham, B3 1NQ T: +44 (0)121 233 7680 F: +44 (0)121 233 7681

Birmingham – Innovation Court Innovation Court, 121 Edmund Street, Birmingham B3 2HJ T: +44 (0)121 230 6010

Bristol 10 Victoria Street, Bristol, BS1 6BN T: +44 (0)117 922 9040

Dublin 2nd Floor, Riverview House, 21-23 City Quay Dublin 2,Ireland T: +353 (0) 1 905 3961

Edinburgh – Thistle Street Prospect House, 5 Thistle Street, Edinburgh EH2 1DF United Kingdom T: +44 (0)131 220 6966

Edinburgh – Manor Place 37 Manor Place, Edinburgh, EH3 7EB Telephone +44 (0)131 225 7900 Fax: +44 (0)131 225 9229

Glasgow – St Vincent St Seventh Floor, 124 St Vincent Street Glasgow G2 5HF United Kingdom T: +44 (0)141 225 4400

Glasgow – West George St 250 West George Street, Glasgow, G2 4QY T: +44 (0)141 221 4030 F: +44 (0)800 066 4367

Leeds 100 Wellington Street, Leeds, LS1 1BA T: +44 (0)113 397 9740 F: +44 (0)113 397 9741

Liverpool Cotton Exchange, Bixteth Street, Liverpool, L3 9LQ T: +44 (0)151 230 1930

London 3rd Floor, 5 Old Bailey, London EC4M 7BA United Kingdom T: +44 (0)203 714 4400

Manchester – 16th Floor, City Tower 16th Floor, City Tower, Piccadilly Plaza Manchester M1 4BT United Kingdom T: +44 (0)161 831 5600 Newcastle Floor B, South Corridor, Milburn House, Dean Street, Newcastle, NE1 1LE United Kingdom T: +44 (0)191 260 0135

Perth

13 Rose Terrace, Perth PH1 5HA T: +44 (0)1738 621 377 F: +44 (0)1738 632 887

Reading

Soane Point, 6-8 Market Place, Reading, Berkshire, RG1 2EG T: +44 (0)118 334 5510

Woking

Dukes Court, Duke Street Woking, Surrey GU21 5BH United Kingdom T: +44 (0)1483 728051 F: +44 (0)1483 755207

Other locations:

France: Bordeaux, Lille, Lyon, Marseille, Paris

Northern Europe: Astana, Copenhagen, Kiev, London, Moscow, Riga, Wroclaw

Southern Europe & Mediterranean: Algiers, Baku, Bucharest, Madrid, Rabat, Rome, Sofia, Tunis

Middle East: Cairo, Dubai, Riyadh

Asia Pacific: Bangkok, Beijing, Brisbane, Delhi, Hanoi, Hong Kong, Manila, Seoul, Shanghai, Singapore, Shenzhen, Taipei

Africa: Abidjan, Douala, Johannesburg, Kinshasa, Libreville, Nairobi

Latin America: Lima, Mexico, Rio de Janeiro, Santiago, São Paulo

North America: Little Falls, Los Angeles, Montreal, New-York, Philadelphia, Washington

